Source code for neuroconv.datainterfaces.ophys.basesegmentationextractorinterface

import warnings
from typing import Literal

import numpy as np
from pynwb import NWBFile
from pynwb.device import Device
from pynwb.ophys import Fluorescence, ImageSegmentation, ImagingPlane, TwoPhotonSeries

from ...baseextractorinterface import BaseExtractorInterface
from ...utils import (
    DeepDict,
    fill_defaults,
    get_base_schema,
    get_schema_from_hdmf_class,
)


[docs] class BaseSegmentationExtractorInterface(BaseExtractorInterface): """Parent class for all SegmentationExtractorInterfaces.""" keywords = ("segmentation", "roi", "cells") def __init__(self, verbose: bool = False, **source_data): super().__init__(**source_data) self.verbose = verbose self.segmentation_extractor = self._extractor_instance
[docs] def get_metadata_schema(self) -> dict: """ Generate the metadata schema for Ophys data, updating required fields and properties. This method builds upon the base schema and customizes it for Ophys-specific metadata, including required components such as devices, fluorescence data, imaging planes, and two-photon series. It also applies temporary schema adjustments to handle certain use cases until a centralized metadata schema definition is available. Returns ------- dict A dictionary representing the updated Ophys metadata schema. Notes ----- - Ensures that `Device` and `ImageSegmentation` are marked as required. - Updates various properties, including ensuring arrays for `ImagingPlane` and `TwoPhotonSeries`. - Adjusts the schema for `Fluorescence`, including required fields and pattern properties. - Adds schema definitions for `DfOverF`, segmentation images, and summary images. - Applies temporary fixes, such as setting additional properties for `ImageSegmentation` to True. """ metadata_schema = super().get_metadata_schema() metadata_schema["required"] = ["Ophys"] metadata_schema["properties"]["Ophys"] = get_base_schema() metadata_schema["properties"]["Ophys"]["properties"] = dict( Device=dict(type="array", minItems=1, items=get_schema_from_hdmf_class(Device)), ) metadata_schema["properties"]["Ophys"]["properties"].update( Fluorescence=get_schema_from_hdmf_class(Fluorescence), ImageSegmentation=get_schema_from_hdmf_class(ImageSegmentation), ImagingPlane=get_schema_from_hdmf_class(ImagingPlane), TwoPhotonSeries=get_schema_from_hdmf_class(TwoPhotonSeries), ) metadata_schema["properties"]["Ophys"]["required"] = ["Device", "ImageSegmentation"] # Temporary fixes until centralized definition of metadata schemas metadata_schema["properties"]["Ophys"]["properties"]["ImagingPlane"].update(type="array") metadata_schema["properties"]["Ophys"]["properties"]["TwoPhotonSeries"].update(type="array") metadata_schema["properties"]["Ophys"]["properties"]["Fluorescence"].update(required=["name"]) metadata_schema["properties"]["Ophys"]["properties"]["Fluorescence"].pop("additionalProperties") roi_response_series_schema = metadata_schema["properties"]["Ophys"]["properties"]["Fluorescence"][ "properties" ].pop("roi_response_series") roi_response_series_schema.pop("maxItems") roi_response_series_schema["items"].update(required=list()) roi_response_series_per_plane_schema = dict( type="object", patternProperties={"^[a-zA-Z0-9]+$": roi_response_series_schema["items"]} ) metadata_schema["properties"]["Ophys"]["properties"]["Fluorescence"].update( patternProperties={"^(?!name$)[a-zA-Z0-9]+$": roi_response_series_per_plane_schema} ) metadata_schema["properties"]["Ophys"]["properties"]["ImageSegmentation"]["additionalProperties"] = True metadata_schema["properties"]["Ophys"]["properties"]["DfOverF"] = metadata_schema["properties"]["Ophys"][ "properties" ]["Fluorescence"] # NOTE: Would prefer to remove in favor of simply using the up-to-date metadata_schema.json images_inner_schema = dict( type="object", properties=dict(name=dict(type="string"), description=dict(type="string")), ) summary_images_per_plane_schema = dict(type="object", patternProperties={"^[a-zA-Z0-9]+$": images_inner_schema}) metadata_schema["properties"]["Ophys"]["properties"]["SegmentationImages"] = dict( type="object", required=["name"], properties=dict( name=dict(type="string", default="SegmentationImages"), description=dict(type="string"), ), patternProperties={ "^(?!(name|description)$)[a-zA-Z0-9]+$": summary_images_per_plane_schema, }, ) fill_defaults(metadata_schema, self.get_metadata()) return metadata_schema
[docs] def get_metadata(self) -> DeepDict: from ...tools.roiextractors.roiextractors import _get_default_ophys_metadata metadata = super().get_metadata() # Get the default ophys metadata (single source of truth) ophys_defaults = _get_default_ophys_metadata() # Only include the fields relevant to segmentation (not imaging series) metadata["Ophys"] = { "Device": ophys_defaults["Ophys"]["Device"], "ImagingPlane": ophys_defaults["Ophys"]["ImagingPlane"], "Fluorescence": ophys_defaults["Ophys"]["Fluorescence"], "DfOverF": ophys_defaults["Ophys"]["DfOverF"], "ImageSegmentation": ophys_defaults["Ophys"]["ImageSegmentation"], "SegmentationImages": ophys_defaults["Ophys"]["SegmentationImages"], } return metadata
[docs] def get_original_timestamps(self) -> np.ndarray: reinitialized_extractor = self._initialize_extractor(self.source_data) return reinitialized_extractor.get_timestamps()
[docs] def get_timestamps(self) -> np.ndarray: return self.segmentation_extractor.get_timestamps()
[docs] def set_aligned_timestamps(self, aligned_timestamps: np.ndarray): self.segmentation_extractor.set_times(times=aligned_timestamps)
[docs] def add_to_nwbfile( self, nwbfile: NWBFile, metadata: dict | None = None, stub_test: bool = False, stub_frames: int | None = None, include_background_segmentation: bool = False, include_roi_centroids: bool = True, include_roi_acceptance: bool = True, mask_type: Literal["image", "pixel", "voxel"] = "image", plane_segmentation_name: str | None = None, iterator_options: dict | None = None, stub_samples: int = 100, ): """ Add segmentation data to the NWB file. Parameters ---------- nwbfile : NWBFile The NWBFile to add the plane segmentation to. metadata : dict, optional The metadata for the interface stub_test : bool, default: False stub_frames : int, optional .. deprecated:: February 2026 Use `stub_samples` instead. include_background_segmentation : bool, default: False Whether to include the background plane segmentation and fluorescence traces in the NWB file. If False, neuropil traces are included in the main plane segmentation rather than the background plane segmentation. include_roi_centroids : bool, default: True Whether to include the ROI centroids on the PlaneSegmentation table. If there are a very large number of ROIs (such as in whole-brain recordings), you may wish to disable this for faster write speeds. include_roi_acceptance : bool, default: True Whether to include if the detected ROI was 'accepted' or 'rejected'. If there are a very large number of ROIs (such as in whole-brain recordings), you may wish to disable this for faster write speeds. mask_type : str, default: 'image' There are three types of ROI masks in NWB, 'image', 'pixel', and 'voxel'. * 'image' masks have the same shape as the reference images the segmentation was applied to, and weight each pixel by its contribution to the ROI (typically boolean, with 0 meaning 'not in the ROI'). * 'pixel' masks are instead indexed by ROI, with the data at each index being the shape of the image by the number of pixels in each ROI. * 'voxel' masks are instead indexed by ROI, with the data at each index being the shape of the volume by the number of voxels in each ROI. Specify your choice between these two as mask_type='image', 'pixel', 'voxel' plane_segmentation_name : str, optional The name of the plane segmentation to be added. iterator_options : dict, optional Options for controlling the iterative write process (buffer size, progress bars) when writing image masks and traces. Note: To configure chunk size and compression, use the backend configuration system via ``get_default_backend_configuration()`` and ``configure_backend()`` after calling this method. See the backend configuration documentation for details. stub_samples : int, default: 100 The number of samples (frames) to use for testing. When provided, takes precedence over `stub_frames`. Returns ------- """ from ...tools.roiextractors import add_segmentation_to_nwbfile # Handle deprecation of stub_frames in favor of stub_samples if stub_frames is not None and stub_samples != 100: raise ValueError("Cannot specify both 'stub_frames' and 'stub_samples'. Use 'stub_samples' only.") if stub_frames is not None: warnings.warn( "The 'stub_frames' parameter is deprecated and will be removed on or after February 2026. " "Use 'stub_samples' instead.", FutureWarning, stacklevel=2, ) effective_stub_samples = stub_frames else: effective_stub_samples = stub_samples if stub_test: effective_stub_samples = min([effective_stub_samples, self.segmentation_extractor.get_num_samples()]) segmentation_extractor = self.segmentation_extractor.slice_samples( start_sample=0, end_sample=effective_stub_samples ) else: segmentation_extractor = self.segmentation_extractor metadata = metadata or self.get_metadata() add_segmentation_to_nwbfile( segmentation_extractor=segmentation_extractor, nwbfile=nwbfile, metadata=metadata, include_background_segmentation=include_background_segmentation, include_roi_centroids=include_roi_centroids, include_roi_acceptance=include_roi_acceptance, mask_type=mask_type, plane_segmentation_name=plane_segmentation_name, iterator_options=iterator_options, )