Source code for neuroconv.datainterfaces.ophys.baseimagingextractorinterface
"""Author: Ben Dichter."""
import warnings
from typing import Literal
import numpy as np
from pynwb import NWBFile
from pynwb.device import Device
from pynwb.ophys import ImagingPlane, OnePhotonSeries, TwoPhotonSeries
from ...baseextractorinterface import BaseExtractorInterface
from ...utils import (
DeepDict,
dict_deep_update,
fill_defaults,
get_base_schema,
get_schema_from_hdmf_class,
)
[docs]
class BaseImagingExtractorInterface(BaseExtractorInterface):
"""Parent class for all ImagingExtractorInterfaces."""
keywords = (
"ophys",
"optical electrophysiology",
"fluorescence",
"microscopy",
"two photon",
"one photon",
"voltage imaging",
"calcium imaging",
)
def _initialize_extractor(self, interface_kwargs: dict):
"""
Initialize and return the extractor instance for imaging interfaces.
Extends the base implementation to also remove the 'photon_series_type' parameter
which is specific to the imaging interface, not the extractor.
Parameters
----------
interface_kwargs : dict
The source data parameters passed to the interface constructor.
Returns
-------
extractor_instance
An initialized imaging extractor instance.
"""
self.extractor_kwargs = interface_kwargs.copy()
self.extractor_kwargs.pop("verbose", None)
self.extractor_kwargs.pop("photon_series_type", None)
extractor_class = self.get_extractor_class()
extractor_instance = extractor_class(**self.extractor_kwargs)
return extractor_instance
def __init__(
self,
verbose: bool = False,
photon_series_type: Literal["OnePhotonSeries", "TwoPhotonSeries"] = "TwoPhotonSeries",
**source_data,
):
from roiextractors import ImagingExtractor
super().__init__(**source_data)
self.imaging_extractor: ImagingExtractor = self._extractor_instance
self.verbose = verbose
self.photon_series_type = photon_series_type
[docs]
def get_metadata_schema(
self,
) -> dict:
"""
Retrieve the metadata schema for the optical physiology (Ophys) data.
Returns
-------
dict
The metadata schema dictionary containing definitions for Device, ImagingPlane,
and either OnePhotonSeries or TwoPhotonSeries based on the photon_series_type.
"""
metadata_schema = super().get_metadata_schema()
metadata_schema["required"] = ["Ophys"]
# Initiate Ophys metadata
metadata_schema["properties"]["Ophys"] = get_base_schema(tag="Ophys")
metadata_schema["properties"]["Ophys"]["required"] = ["Device", "ImagingPlane", self.photon_series_type]
metadata_schema["properties"]["Ophys"]["properties"] = dict(
Device=dict(type="array", minItems=1, items={"$ref": "#/properties/Ophys/definitions/Device"}),
ImagingPlane=dict(type="array", minItems=1, items={"$ref": "#/properties/Ophys/definitions/ImagingPlane"}),
)
metadata_schema["properties"]["Ophys"]["properties"].update(
{
self.photon_series_type: dict(
type="array",
minItems=1,
items={"$ref": f"#/properties/Ophys/definitions/{self.photon_series_type}"},
),
}
)
# Schema definition for arrays
imaging_plane_schema = get_schema_from_hdmf_class(ImagingPlane)
imaging_plane_schema["properties"]["optical_channel"].pop("maxItems")
metadata_schema["properties"]["Ophys"]["definitions"] = dict(
Device=get_schema_from_hdmf_class(Device),
ImagingPlane=imaging_plane_schema,
)
photon_series = dict(
OnePhotonSeries=OnePhotonSeries,
TwoPhotonSeries=TwoPhotonSeries,
)[self.photon_series_type]
metadata_schema["properties"]["Ophys"]["definitions"].update(
{
self.photon_series_type: get_schema_from_hdmf_class(photon_series),
}
)
fill_defaults(metadata_schema, self.get_metadata())
return metadata_schema
[docs]
def get_metadata(
self,
) -> DeepDict:
"""
Retrieve the metadata for the imaging data.
Returns
-------
DeepDict
Dictionary containing metadata including device information, imaging plane details,
and photon series configuration.
"""
from ...tools.roiextractors import get_nwb_imaging_metadata
metadata = super().get_metadata()
default_metadata = get_nwb_imaging_metadata(self.imaging_extractor, photon_series_type=self.photon_series_type)
metadata = dict_deep_update(default_metadata, metadata)
# fix troublesome data types
if "TwoPhotonSeries" in metadata["Ophys"]:
for two_photon_series in metadata["Ophys"]["TwoPhotonSeries"]:
if "dimension" in two_photon_series:
two_photon_series["dimension"] = list(two_photon_series["dimension"])
if "rate" in two_photon_series:
two_photon_series["rate"] = float(two_photon_series["rate"])
return metadata
[docs]
def get_original_timestamps(self) -> np.ndarray:
reinitialized_extractor = self._initialize_extractor(self.source_data)
return reinitialized_extractor.get_timestamps()
[docs]
def set_aligned_timestamps(self, aligned_timestamps: np.ndarray):
self.imaging_extractor.set_times(times=aligned_timestamps)
[docs]
def add_to_nwbfile(
self,
nwbfile: NWBFile,
metadata: dict | None = None,
photon_series_type: Literal["TwoPhotonSeries", "OnePhotonSeries"] = "TwoPhotonSeries",
photon_series_index: int = 0,
parent_container: Literal["acquisition", "processing/ophys"] = "acquisition",
stub_test: bool = False,
stub_frames: int | None = None,
always_write_timestamps: bool = False,
iterator_type: str | None = "v2",
iterator_options: dict | None = None,
stub_samples: int = 100,
):
"""
Add imaging data to the NWB file
Parameters
----------
nwbfile : NWBFile
The NWB file where the imaging data will be added.
metadata : dict, optional
Metadata for the NWBFile, by default None.
photon_series_type : {"TwoPhotonSeries", "OnePhotonSeries"}, optional
The type of photon series to be added, by default "TwoPhotonSeries".
photon_series_index : int, optional
The index of the photon series in the provided imaging data, by default 0.
parent_container : {"acquisition", "processing/ophys"}, optional
Specifies the parent container to which the photon series should be added, either as part of "acquisition" or
under the "processing/ophys" module, by default "acquisition".
stub_test : bool, optional
If True, only writes a small subset of frames for testing purposes, by default False.
stub_frames : int, optional
.. deprecated:: February 2026
Use `stub_samples` instead.
always_write_timestamps : bool, optional
Whether to always write timestamps, by default False.
iterator_type : {"v2", None}, default: "v2"
The type of iterator for chunked data writing.
'v2': Uses iterative write with control over chunking and progress bars.
None: Loads all data into memory before writing (not recommended for large datasets).
Note: 'v1' is deprecated and will be removed on or after March 2026.
iterator_options : dict, optional
Options for controlling the iterative write process (buffer size, progress bars).
See the `pynwb tutorial on iterative write <https://pynwb.readthedocs.io/en/stable/tutorials/advanced_io/plot_iterative_write.html#sphx-glr-tutorials-advanced-io-plot-iterative-write-py>`_
for more information on chunked data writing.
Note: To configure chunk size and compression, use the backend configuration system
via ``get_default_backend_configuration()`` and ``configure_backend()`` after calling
this method. See the backend configuration documentation for details.
stub_samples : int, default: 100
The number of samples (frames) to use for testing. When provided, takes precedence over `stub_frames`.
"""
from ...tools.roiextractors import add_imaging_to_nwbfile
# Handle deprecation of stub_frames in favor of stub_samples
if stub_frames is not None and stub_samples != 100:
raise ValueError("Cannot specify both 'stub_frames' and 'stub_samples'. Use 'stub_samples' only.")
if stub_frames is not None:
warnings.warn(
"The 'stub_frames' parameter is deprecated and will be removed on or after February 2026. "
"Use 'stub_samples' instead.",
FutureWarning,
stacklevel=2,
)
effective_stub_samples = stub_frames
else:
effective_stub_samples = stub_samples
if stub_test:
effective_stub_samples = min([effective_stub_samples, self.imaging_extractor.get_num_samples()])
imaging_extractor = self.imaging_extractor.slice_samples(start_sample=0, end_sample=effective_stub_samples)
else:
imaging_extractor = self.imaging_extractor
metadata = metadata or self.get_metadata()
add_imaging_to_nwbfile(
imaging=imaging_extractor,
nwbfile=nwbfile,
metadata=metadata,
photon_series_type=photon_series_type,
photon_series_index=photon_series_index,
parent_container=parent_container,
always_write_timestamps=always_write_timestamps,
iterator_type=iterator_type,
iterator_options=iterator_options,
)