Source code for neuroconv.datainterfaces.ecephys.edf.edfdatainterface
from pydantic import FilePath
from ..baserecordingextractorinterface import BaseRecordingExtractorInterface
from ....tools import get_package
from ....utils import DeepDict
[docs]
class EDFRecordingInterface(BaseRecordingExtractorInterface):
"""
Data interface class for converting European Data Format (EDF) data.
Uses the :py:func:`~spikeinterface.extractors.read_edf` reader from SpikeInterface.
Not supported on M1 macs.
"""
display_name = "EDF Recording"
keywords = BaseRecordingExtractorInterface.keywords + ("European Data Format",)
associated_suffixes = (".edf",)
info = "Interface for European Data Format (EDF) recording data."
[docs]
@classmethod
def get_source_schema(cls) -> dict:
source_schema = super().get_source_schema()
source_schema["properties"]["file_path"]["description"] = "Path to the .edf file."
return source_schema
[docs]
@staticmethod
def get_available_channel_ids(file_path: FilePath) -> list:
"""
Get all available channel names from an EDF file.
Parameters
----------
file_path : FilePath
Path to the EDF file
Returns
-------
list
List of all channel names in the EDF file
"""
from spikeinterface.extractors import read_edf
# Load the recording to inspect channels
recording = read_edf(file_path=file_path, all_annotations=True, use_names_as_ids=True)
# Get all channel IDs
channel_ids = recording.get_channel_ids()
# Clean up to avoid dangling references
del recording
return channel_ids.tolist()
def _initialize_extractor(self, interface_kwargs: dict):
"""Override to add use_names_as_ids and pop channels_to_skip."""
self.extractor_kwargs = interface_kwargs.copy()
self.extractor_kwargs.pop("verbose", None)
self.extractor_kwargs.pop("es_key", None)
self.extractor_kwargs.pop("channels_to_skip")
self.extractor_kwargs["all_annotations"] = True
self.extractor_kwargs["use_names_as_ids"] = True
extractor_class = self.get_extractor_class()
extractor_instance = extractor_class(**self.extractor_kwargs)
return extractor_instance
def __init__(
self,
file_path: FilePath,
verbose: bool = False,
es_key: str = "ElectricalSeries",
channels_to_skip: list | None = None,
):
"""
Load and prepare data for EDF.
Currently, only continuous EDF+ files (EDF+C) and original EDF files (EDF) are supported
Parameters
----------
file_path : str or Path
Path to the edf file
verbose : bool, default: False
Allows verbose.
es_key : str, default: "ElectricalSeries"
Key for the ElectricalSeries metadata
channels_to_skip : list, default: None
Channels to skip when adding the data to the nwbfile. These parameter can be used to skip non-neural
channels that are present in the EDF file.
"""
get_package(
package_name="pyedflib",
excluded_platforms_and_python_versions=dict(darwin=dict(arm=["3.9"])),
)
super().__init__(file_path=file_path, verbose=verbose, es_key=es_key, channels_to_skip=channels_to_skip)
self.edf_header = self.recording_extractor.neo_reader.edf_header
# We remove the channels that are not neural
if channels_to_skip:
self.recording_extractor = self.recording_extractor.remove_channels(remove_channel_ids=channels_to_skip)