from pathlib import Path
from typing import Optional
from pydantic import FilePath
from .header_tools import _parse_nev_basic_header, _parse_nsx_basic_header
from ..baserecordingextractorinterface import BaseRecordingExtractorInterface
from ..basesortingextractorinterface import BaseSortingExtractorInterface
from ....utils import DeepDict, get_json_schema_from_method_signature
[docs]
class BlackrockRecordingInterface(BaseRecordingExtractorInterface):
"""
Primary data interface class for converting Blackrock data.
Uses the :py:func:`~spikeinterface.extractors.read_blackrock` reader from SpikeInterface.
"""
display_name = "Blackrock Recording"
associated_suffixes = (".ns0", ".ns1", ".ns2", ".ns3", ".ns4", ".ns5")
info = "Interface for Blackrock recording data."
[docs]
@classmethod
def get_source_schema(cls):
source_schema = get_json_schema_from_method_signature(method=cls.__init__, exclude=["block_index", "seg_index"])
source_schema["properties"]["file_path"][
"description"
] = "Path to the Blackrock file with suffix being .ns1, .ns2, .ns3, .ns4m .ns4, or .ns6."
return source_schema
def _initialize_extractor(self, interface_kwargs: dict):
"""Override to add stream_id."""
self.extractor_kwargs = interface_kwargs.copy()
self.extractor_kwargs.pop("verbose", None)
self.extractor_kwargs.pop("es_key", None)
self.extractor_kwargs["stream_id"] = self.stream_id
return self.get_extractor_class()(**self.extractor_kwargs)
def __init__(
self,
file_path: FilePath,
nsx_override: FilePath | None = None,
verbose: bool = False,
es_key: str = "ElectricalSeries",
):
"""
Load and prepare data corresponding to Blackrock interface.
Parameters
----------
file_path : FilePath
Path to the Blackrock file with suffix being .ns1, .ns2, .ns3, .ns4m .ns4, or .ns6
verbose: bool, default: True
es_key : str, default: "ElectricalSeries"
"""
file_path = Path(file_path)
if file_path.suffix == "":
assert nsx_override is not None, (
"if file_path is empty " 'provide a nsx file to load with "nsx_override" arg'
)
nsx_to_load = None
self.file_path = Path(nsx_override)
else:
assert "ns" in file_path.suffix, "file_path should be an nsx file"
nsx_to_load = int(file_path.suffix[-1])
self.file_path = file_path
self.stream_id = str(nsx_to_load)
super().__init__(file_path=file_path, verbose=verbose, es_key=es_key)
[docs]
class BlackrockSortingInterface(BaseSortingExtractorInterface):
"""Primary data interface class for converting Blackrock spiking data."""
display_name = "Blackrock Sorting"
associated_suffixes = (".nev",)
info = "Interface for Blackrock sorting data."
[docs]
@classmethod
def get_source_schema(cls) -> dict:
metadata_schema = get_json_schema_from_method_signature(method=cls.__init__)
metadata_schema["additionalProperties"] = True
metadata_schema["properties"]["file_path"].update(description="Path to Blackrock .nev file.")
return metadata_schema
def __init__(
self,
file_path: FilePath,
sampling_frequency: Optional[float] = None,
nsx_to_load: Optional[int | list | str] = None,
verbose: bool = False,
):
"""
Parameters
----------
file_path : str, Path
The file path to the ``.nev`` data
sampling_frequency : float, optional
The sampling frequency for the sorting extractor. When the signal data is available (.ncs) those files will be
used to extract the frequency automatically. Otherwise, the sampling frequency needs to be specified for
this extractor to be initialized.
nsx_to_load : int | list | str, optional
IDs of nsX file from which to load data, e.g., if set to 5 only data from the ns5 file are loaded.
If 'all', then all nsX will be loaded. If None, all nsX files will be loaded. If empty list, no nsX files will be loaded.
verbose : bool, default: False
Enables verbosity
"""
super().__init__(
file_path=file_path,
sampling_frequency=sampling_frequency,
nsx_to_load=nsx_to_load,
verbose=verbose,
)